In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene.

نویسندگان

  • D W Li
  • Y S Zhou
  • X Huang
  • L Jiang
  • J-F Silvain
  • Y F Lu
چکیده

Although existing methods (chemical vapor deposition, mechanical exfoliation, etc.) are available to produce graphene, the lack of thickness control limits further graphene applications. In this study, we demonstrate an approach to precisely thin graphene films to a specific thickness using femtosecond (fs) laser raster scanning. By using appropriate laser fluence and scanning times, graphene thinning with an atomic layer precision, namely layer-by-layer graphene removal, has been realized. The fs laser used was configured in a four-wave mixing (FWM) system which can be used to distinguish graphene layer thickness and count the number of layers using the linear relationship between the FWM signal intensity and the graphene thickness. Furthermore, FWM imaging has been successfully applied to achieve in situ, real-time monitoring of the fs laser graphene thinning process. This method can not only realize the large-scale thinning of graphene with atomic layer precision, but also provide in situ, rapid imaging capability of graphene for an accurate assessment of the number of layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films

We developed a simple, scalable and high-throughput method for fabrication of large-area three-dimensional rose-like microflowers with controlled size, shape and density on graphene films by femtosecond laser micromachining. The novel biomimetic microflower that composed of numerous turnup graphene nanoflakes can be fabricated by only a single femtosecond laser pulse, which is efficient enough ...

متن کامل

Burning Graphene Layer-by-Layer

Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce no...

متن کامل

Mono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity

Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...

متن کامل

Numerical and Experimental Investigation of Deep Drawing Process in Square Section of Single-Layer and Two-Layer Sheet

Deep drawing of two-layer sheet is a suitable way to achieve product with a desired shape and desired properties in sheet metal forming technology. Control of deep drawing parameter such as thinning is the most important challenge in this process. The most difficult part of this challenge is differences in material properties and geometry of each layer. In this paper, numerical approach has bee...

متن کامل

Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning

The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 8  شماره 

صفحات  -

تاریخ انتشار 2015